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Abstract
Adiabatic calorimetry measurements have been performed on Cs2CdBr4 from
90 to 270 K. Phase transitions at 252.03, 237.02, and 154.88 K were found.
The thermal expansion coefficients and the elastic constant values were used
to separate the harmonic and anharmonic contributions to the specific heat,
which permitted us to establish a baseline for the precise determination of the
thermodynamic functions associated with the phase transitions. Anharmonic
quantities, such as the Grüneisen parameter and the isothermal compressibility,
were also calculated. Finally, no experimental evidence of the suggested
transitions at 208 and 130 K was found.

1. Introduction

Cs2CdBr4 belongs to the widely studied family of A2BX4 compounds [1–5]. Many of them
show an orthorhombic phase at room temperature and exhibit successive structural phase
transitions at lower temperatures. Incommensurate phases are also commonly present. For
this crystal, the incommensurability was first suggested by Altermatt et al [6] and confirmed
by Plesko et al [1]. The space group symmetry of Cs2CdBr4 was found to be Pnma at
room temperature [6]. Below 252 K, the incommensurate phase with superspace group
Pnma(α, 0, 0)1̄SS [7] is stable down to 237 K, where the lock-in phase transition in the centre
of the Brillouin zone takes place. This ferroelastic commensurate phase with space group
P21/n [1] undergoes another phase transition at 156 K. Below this temperature the crystal
shows a monoclinic phase with space group P 1̄ (Z = 4 in all phases) [8, 9]. This phase
transition sequence and the physical properties of the various phases have been studied by
means of different experimental techniques which include dilatometry [10], dielectric [8, 10],
NQR [11, 12], Raman scattering [13, 14], ultrasonic [15, 16], and x-ray diffraction [6, 7, 9, 17]
approaches.
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Figure 1. Specific heat measurements on Cs2CdBr4 by adiabatic calorimetry using the pulse method
from 90 to 270 K. One dynamical thermogram around the lock-in phase transition at 237 K is
plotted. The harmonic approximation (dashed line) and the harmonic + anharmonic contribution
(continuous line) are also shown. Details of these quantities around the phase transition sequence
can be appreciated in the inset.

Two additional phase transitions at 208 K [8] and 130 K [17] are still under
discussion [10, 18]. More recently, the specific heat results obtained by AC calorimetry [19]
have given some additional evidence for these new phase transitions.

The aim of this work is to characterize the phase transition sequence of this crystal in two
main respects by means of adiabatic calorimetry. The first task is examining the presence of
these suggested new phase transitions and, secondly, we intend to obtain reliable values for the
specific heat and for the phase transition thermodynamic functions.

2. Experimental results

Single crystals of Cs2CdBr4 were obtained by the Bridgman method, using a stoichiometric
mixture of CsBr and CdBr2. The chemical analysis and the x-ray results confirmed the quality
of the crystals, as cell parameters similar to those cited in the literature [6] were found at room
temperature: a = 10.24 Å, b = 7.95 Å, and c = 13.98 Å. The phase transition sequence of
Cs2CdBr4 has been studied by means of adiabatic calorimetry and dilatometric techniques. The
specific heat was determined by means of an experimental installation described in [20]. The
absolute temperature was measured by a Pt resistance thermometer calibrated from 4.2 to 370 K
with a 1 mK resolution. The Cp accuracy is of about 0.1% throughout the temperature range
from 10 to 350 K. Points were obtained by two different methods: the discontinuous pulse
technique and dynamic heating thermograms. The best accuracy is attained by the first method,
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whereas the second one is more appropriate for achieving a better resolution of the Cp curve
around the phase transition peaks. Figure 1 shows the experimental results obtained by the first
procedure in the 90–270 K temperature range, which covers the three main phase transitions
previously reported. Peaks associated with these transformations are found at 252.03, 237.02,
and 154.88 K, in agreement with previous results [1], and are associated with the Pnma–
incommensurate (Pnma(α, 0, 0)1̄SS)–P21/n (lock-in)–P 1̄ sequence. From the shape of the
Cp curve, a second-order character should be assigned to the Pnma–Inc. and to P21/n–P 1̄
transitions, whereas the lock-in phase transition shows a first-order character.

Dynamic thermograms were also taken around the phase transition temperature ranges.
Low heating rates of about 1 K h−1 lead to a better resolution of the specific heat curve
around the peaks and allow us to determine the three anomalies clearly. In particular, the
thermogram around the lock-in transition at 237 K is plotted in figure 1. Special care has been
taken in the measurements around 208 and 130 K, where two additional phase transitions were
suggested to take place, but the various thermograms performed showed no anomalies within
the experimental resolution.

Finally, dilatometric measurements were performed from 120 to 310 K along the three
crystallographic axes. A thermal hysteresis of about 5 ◦C for the lock-in phase transition is
observed, but no similar effect was found for the remaining phase transitions. These results
confirm the order characters of the three phase transitions suggested by the calorimetric results.
The thermal expansivity coefficients obtained at room temperature are: α1 = 3.15 ×10−5 K−1,
α2 = 7.00 × 10−5 K−1, and α3 = 3.75 × 10−5 K−1, which are in very good agreement with
the dilatometric data previously reported [10].

3. Discussion

The thermodynamic functions, such as the enthalpy and entropy associated with the respective
phase transition mechanisms, are usually obtained from the specific heat of the materials by
a previous subtraction of a conventional baseline, which accounts for the estimated normal
lattice contribution to this quantity. The calculation of this baseline can be accomplished in
two steps. The first one is an estimation of the specific heat at fixed strain (Cε) in the harmonic
approximation, which in a first approach can be identified with the specific heat at constant
volume (Cv). Secondly, the anharmonic contribution to the specific heat can be calculated from
the thermodynamic relation [21]

Cσ − Cε = T V Ci jklαi jαkl (1)

where Cσ is the specific heat at constant stress (or Cp), T is the absolute temperature, and V is
the molar volume. Ci jkl are the elastic constants and αi j the thermal expansion coefficients.

As can be seen in previous works [22, 23] the harmonic specific heat can be obtained
from the vibrational spectrum using both Debye and Einstein functions for the acoustic and
optical modes respectively. The requirements are a precise knowledge of all the normal
mode frequencies and even their temperature evolution. In our case only some mode
frequencies of Cs2CdBr4 obtained from Raman and infrared spectroscopies are available in
the literature [13, 14, 18], and up to now no neutron diffraction data have been reported.
More recently, Shchur et al [24] reported normal mode data frequencies obtained by model
calculations. One of the main characteristics of the Cs2CdBr4 vibrational spectrum is the very
low frequency values of the normal modes, both the ones obtained from the spectroscopic
data and those from the calculations. The highest frequency is 210 cm−1. These results are a
direct consequence of the high masses of the ions involved. In this situation we are not able to
separate the internal modes of the CdBr4 tetrahedra from the atomic displacements of this group
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(rotation and translations) and from the Cs atomic translations. This approach has been useful
for some other compounds [23, 25] but is not allowed in this case due to the high coupling of
these two sets of crystal vibrations. On the other hand, this close grouping of the crystal mode
frequencies in the low part of the spectrum suggests that a simple Debye model, which is not
adequate for a precise description of the harmonic specific heat when high frequency optical
modes are present, could be a reasonable approach for this compound. In agreement with the
spectroscopic data, our experimental Cp curve shows a very flat shape from 90 to 270 K, the
specific heat values increasing to a mere 15% in this range. This is a clear consequence of the
low frequencies present in the crystal vibrational spectrum, as the contribution of such modes
to the specific heat attains the classical saturated values at low temperatures. In this situation,
an empirical selection of a Debye function with a characteristic temperature θD = 150 K
has been found sufficient for a good description of the harmonic specific heat over the whole
temperature range. As can be seen in figure 1 (dashed line), it approximates quite well the
experimental curve at 90 K, where a very low anharmonic contribution is expected. It also
shows a good agreement with the experimental Cp at room temperature after subtracting this
contribution (see below). In fact, the harmonic specific heat at this temperature practically
attains the saturated value of 21 R, expected for a seven-atom molecule. Here R is the ideal
gas constant (R = 8.314472 J K−1 mol−1).

The anharmonic contribution at T = 270 K was calculated from the measured values
for the nine independent elastic constants in the Pnma phase [15] together with the thermal
expansion coefficient values obtained and a molar volume V = 1.714 × 10−4 m3 mol−1, by
using equation (1). This contribution is Cp − Cv = 1.12 R which represents a reasonable 5%
of Cp. In previous works [22, 25] the decreasing of this contribution for lower temperatures is
well described by the empirical Nernst–Lindemann law:

Cp − Cv = aT C2
p (2)

where

a = T V Ci jklαi jαkl/C2
pT (3)

is found to be constant over a wide temperature range. Using the experimental values at
room temperature in equation (3) we obtain a = 8.543 × 10−6 R−1 K−1. This result can
be used to obtain the isothermal compressibility kT = V α2/aC2

p = 9.64 × 10−11 Pa−1

and the Grüneisen parameter � = αV/kT Cv = 1.48 at room temperature. Here α is the
volume compressibility: α = α1 + α2 + α3. A more direct way to calculate the isothermal
compressibility from the elastic stiffness (si j ) values obtained from [15] leads to a very similar
value kT = ∑3

i, j=1 si j = 9.89 × 10−11 Pa−1.
However, a slightly different value for the constant in equation (3): a = 9.98 ×

10−6 R−1 K−1, permits a better approach for the anharmonic contribution as it provides the
best fit to the experimental data from 90 to 270 K. It should be noted that discrepancies of about
15% are found for this constant when using different experimental expansivity data [10]. On
the other hand, the lack of a complete set of elastic constant values for the various crystal phases
prevents a precise calculation of the anharmonic contribution by using equation (1) and compels
us to make use of the empirical Nernst–Lindemann approach. Within this approximation, a
good baseline (figure 1) representing the normal lattice specific heat is obtained which, by
subtraction from the Cp experimental values, permits a reliable determination of the specific
heat excess associated with the phase transition sequence. This result is shown in figure 2.

As found for other related compounds of the A2BX4 family with incommensurate
phases [26, 27], the calorimetric signal associated with the lock-in phase transition appears
superimposed on the second-order specific heat peak of the Pnma incommensurate phase
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Figure 2. The phase transition specific heat of Cs2CdBr4, obtained by subtraction of the baseline
plotted in figure 1. The dashed line represents the linear extrapolation used to calculate the
thermodynamic functions of the lock-in phase transition.

Table 1. Thermodynamic functions of Cs2CdBr4 phase transitions.

T (K) �H (R K) �S (R)

T1 252.03 25 ± 3 0.110 ± 0.015
T2 237.02 11 ± 1 0.047 ± 0.003
T3 154.88 11 ± 1 0.082 ± 0.007

transition, the calorimetric contribution of which extends well down to the nominal transition
temperature. A final empirical deconvolution was attained by a simple linear extrapolation
(dashed line). After subtraction of the baselines, the enthalpy and entropy excesses are
determined by means of a numerical integration of the experimental Cp using the expressions

�H =
∫

Cp dt �S =
∫

Cp

T
dt . (4)

The results for the phase transition thermodynamic values are shown in table 1.
These values are lower than those reported in [19] where the authors point out the

difficulties of the AC calorimetric technique for absolute value determinations of Cp. In fact,
this last quantity attains 53 R at 270 K in the cited work, whereas in our case a more reasonable
value of 22 R is found at this temperature.

In contrast with the extremely low entropy of the lock-in phase transitions exhibited by
many of A2BX4 crystals, the high value �S = 0.05 R found for this crystal is explained
by the correspondingly higher jump of the wavevector just at the transition temperature. It
should be pointed out that a good correspondence is usually obtained for both quantities in
other incommensurate compounds [28].

As regards the suggested phase transitions at 130 and 208 K, two small calorimetric signals
have been recently reported [19]. However, these results are not reproducible and do not permit
any definitive conclusions. In our case, the specific heat curve also shows some irregularities
around these temperatures (see figure 2), although they lie within the limits of the experimental
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resolution. Approximate calculations for the possible phase transitions limit their enthalpy
values to �H (130) < 0.07 R and �H (208) < 0.10 R respectively.
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